Bibliography

[1] L. M. Adleman. A subexponential algorithm for the discrete logarithm problem with applications to cryptography. In 20th Annual Symposium on Foundations of Computer Science, pages 55-60, 1979
[2] L. M. Adleman. The function field sieve. In Proc. 1st International Symposium on Algorithmic Number Theory (ANTS-I), pages 108-121, 1994.
[3] L. M. Adleman and M.-D. Huang. Primality Testing and Two Dimensional Abelian Varieties over Finite Fields (Lecture Notes in Mathematics No. 1512). Springer-Verlag, 1992.
[4] L. M. Adleman and H. W. Lenstra, Jr. Finding irreducible polynomials over finite fields. In 18th Annual ACM Symposium on Theory of Computing, pages 350-355, 1986.
[5] L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing prime numbers from composite numbers. Annals of Mathematics, 117:173-206, 1983.
[6] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Manuscript, www. cse.iitk.ac.in/news/primality.html, 2002.
[7] W. Alford, A. Granville, and C. Pomerance. There are infintely many Carmichael numbers. Annals of Mathematics, 140:703-722, 1994.
[8] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1973.
[9] E. Bach. How to generate factored random numbers. SIAM Journal on Computing, 17:179-193, 1988.
[10] E. Bach. Explicit bounds for primality testing and related problems. Mathematics of Computation, 55:355-380, 1990.
[11] E. Bach. Efficient prediction of Marsaglia-Zaman random number generators. IEEE Transactions on Information Theory, IT-44:1253-1257, 1998.
[12] E. Bach and J. Shallit. Algorithmic Number Theory, volume 1. MIT Press, 1996.
[13] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. In First ACM Conference on Computer and Communications Security, pages 62-73, 1993.
[14] M. Ben-Or. Probabilistic algorithms in finite fields. In 22nd Annual Symposium on Foundations of Computer Science, pages 394-398, 1981.
[15] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.
[16] E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation, 24(111):713-735, 1970.
[17] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator. SIAM Journal on Computing, 15:364-383, 1986.
[18] D. Boneh. The Decision Diffie-Hellman Problem. In Proc. 3rd International Symposium on Algorithmic Number Theory (ANTS-III), pages 48-63, 1998. Springer LNCS 1423.
[19] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than $N^{0.292}$. IEEE Transactions on Information Theory, IT-46:1339-1349, 2000.
[20] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal of the ACM, 25:581-595, 1978.
[21] J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance. Factoring integers with the number field sieve. In A. K. Lenstra and H. W. Lenstra, Jr., editors, The Development of the Number Field Sieve, pages 50-94. Springer-Verlag, 1993.
[22] D. A. Burgess. The distribution of quadratic residues and non-residues. Mathematika, 4:106-112, 1957.
[23] E. Canfield, P. Erdős, and C. Pomerance. On a problem of Oppenheim concerning 'Factorisatio Numerorum'. Journal of Number Theory, 17:1-28, 1983.
[24] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary rings. Acta Informatica, 28:693-701, 1991.
[25] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, 18:143-154, 1979.
[26] A. L. Chistov. Polynomial time construction of a finite field. In Abstracts of Lectures at 7th All-Union Conference in Mathematical Logic, Novosibirsk, page 196, 1984. In Russian.
[27] D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology, 6:169-180, 1993.
[28] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):23-52, 1990.
[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, second edition, 2001.
[30] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2001.
[31] I. Damgård and G. Frandsen. Efficient algorithms for gcd and cubic residuosity in the ring of Eisenstein integers. In 14 th International Symposium on Fundamentals of Computation Theory, Springer LNCS 2751, pages 109-117, 2003.
[32] I. Damgård, P. Landrock, and C. Pomerance. Average case error estimates for the strong probable prime test. Mathematics of Computation, 61:177-194, 1993.
[33] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, IT-22:644-654, 1976.
[34] J. Dixon. Asymptotocally fast factorization of integers. Mathematics of Computation, 36:255-260, 1981.
[35] J. L. Dornstetter. On the equivalence between Berlekamp's and Euclid's algorithms. IEEE Transactions on Information Theory, IT-33:428-431, 1987.
[36] E. Fouvry. Théorème de Brun-Titchmarsh; application au théorème de Fermat. Inventiones Mathematicae, 79:383-407, 1985.
[37] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.
[38] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Computational Complexity, 2:187-224, 1992.
[39] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28:270-299, 1984.
[40] D. M. Gordon. Discrete logarithms in GF (p) using the number field sieve. SIAM Journal on Discrete Mathematics, 6:124-138, 1993.
[41] J. Gordon. Very simple method to find the minimal polynomial of an arbitrary non-zero element of a finite field. Electronic Letters, 12:663-664, 1976.
[42] H. Halberstam and H. Richert. Sieve Methods. Academic Press, 1974.
[43] G. H. Hardy and J. E. Littlewood. Some problems of partito numerorum. III. On the expression of a number as a sum of primes. Acta Mathematica, 44:1-70, 1923.
[44] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, fifth edition, 1984.
[45] D. Heath-Brown. Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression. Proceedings of the London Mathematical Society, 64:265-338, 1992.
[46] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random number generation from any one-way function. In 21st Annual ACM Symposium on Theory of Computing, pages 12-24, 1989.
[47] R. Impagliazzo and D. Zuckermann. How to recycle random bits. In 30th Annual Symposium on Foundations of Computer Science, pages 248-253, 1989.
[48] H. Iwaniec. On the error term in the linear sieve. Acta Arithmetica, 19:1-30, 1971.
[49] H. Iwaniec. On the problem of Jacobsthal. Demonstratio Mathematica, 11:225-231, 1978.
[50] A. Kalai. Generating random factored numbers, easily. In Proc. 13th ACMSIAM Symposium on Discrete Algorithms, page 412, 2002.
[51] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. In 27th Annual ACM Symposium on Theory of Computing, pages 398-406, 1995.
[52] A. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics Doklady, 7:595-596, 1963.
[53] S. H. Kim and C. Pomerance. The probability that a random probable prime is composite. Mathematics of Computation, 53(188):721-741, 1989.
[54] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, second edition, 1981.
[55] D. Lehmann. On primality tests. SIAM Journal on Computing, 11:374-375, 1982.
[56] D. Lehmer and R. Powers. On factoring large numbers. Bulletin of the AMS, 37:770-776, 1931.
[57] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics, 126:649-673, 1987.
[58] H. W. Lenstra, Jr. and C. Pomerance. A rigorous time bound for factoring integers. Journal of the AMS, 4:483-516, 1992.
[59] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press, 1996.
[60] J. Massey. Shift-register synthesis and BCH coding. IEEE Transactions on Information Theory, IT-15:122-127, 1969.
[61] U. Maurer. Fast generation of prime numbers and secure public-key cryptographic parameters. Journal of Cryptology, 8:123-155, 1995.
[62] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.
[63] G. L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and System Sciences, 13:300-317, 1976.
[64] W. Mills. Continued fractions and linear recurrences. Mathematics of Computation, 29:173-180, 1975.
[65] K. Morrison. Random polynomials over finite fields. Manuscript, www. calpoly.edu/~kmorriso/Research/RPFF.pdf, 1999.
[66] M. Morrison and J. Brillhart. A method of factoring and the factorization of F_{7}. Mathematics of Computation, 29:183-205, 1975.
[67] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes, 55(2):165-172, 1994. Translated from Matematicheskie Zametki, 55(2):91-101, 1994.
[68] I. Niven and H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley and Sons, Inc., second edition, 1966.
[69] J. Oesterlé. Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann généralisée. Astérisque, 61:165-167, 1979.
[70] P. van Oorschot and M. Wiener. On Diffie-Hellman key agreement with short exponents. In Advances in Cryptology-Eurocrypt '96, Springer LNCS 1070, pages 332-343, 1996.
[71] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over GF (p) and its cryptographic significance. IEEE Transactions on Information Theory, IT-24:106-110, 1978.
[72] J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32:918-924, 1978.
[73] J. M. Pollard. Factoring with cubic integers. In A. K. Lenstra and H. W. Lenstra, Jr., editors, The Development of the Number Field Sieve, pages 4-10. Springer-Verlag, 1993.
[74] C. Pomerance. Analysis and comparison of some integer factoring algorithms. In H. W. Lenstra, Jr. and R. Tijdeman, editors, Computational Methods in Number Theory, Part I, pages 89-139. Mathematisch Centrum, 1982.
[75] M. O. Rabin. Probabilistic algorithms. In Algorithms and Complexity, Recent Results and New Directions, pages 21-39. Academic Press, 1976.
[76] D. Redmond. Number Theory - An Introduction. Marcel Dekker, 1996.
[77] I. Reed and G. Solomon. Polynomial codes over certain finite fields. SIAM Journal on Applied Mathematics, pages 300-304, 1960.
[78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.
[79] J. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6:64-94, 1962.
[80] O. Schirokauer, D. Weber, and T. Denny. Discrete logarithms: the effectiveness of the index calculus method. In Proc. 2nd International Symposium on Algorithmic Number Theory (ANTS-II), pages 337-361, 1996.
[81] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:139-144, 1971.
[82] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281-282, 1971.
[83] I. A. Semaev. Construction of irreducible polynomials over finite fields with linearly independent roots. Mat. Sbornik, 135:520-532, 1988. In Russian; English translation in Math. USSR-Sbornik, 63(2):507-519, 1989.
[84] A. Shamir. Factoring numbers in $O(\log n)$ arithmetic steps. Information Processing Letters, 8:28-31, 1979.
[85] A. Shamir. How to share a secret. Communications of the ACM, 22:612-613, 1979.
[86] D. Shanks. Class number, a theory of factorization, and genera. In Proceedings of Symposia in Pure Mathematics, volume 20, pages 415-440, 1969.
[87] P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science, pages 124-134, 1994.
[88] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41:303-332, 1999.
[89] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathematics of Computation, 54(189):435-447, 1990.
[90] V. Shoup. Searching for primitive roots in finite fields. Mathematics of Computation, 58:369-380, 1992.
[91] V. Shoup. Fast construction of irreducible polynomials over finite fields. Journal of Symbolic Computation, 17(5):371-391, 1994.
[92] V. Shoup. A new polynomial factorization algorithm and its implementation. Journal of Symbolic Computation, 20(4):363-397, 1995.
[93] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in Cryptology-Eurocrypt '97, pages 256-266, 1997.
[94] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal on Computing, 6:84-85, 1977.
[95] J. Stein. Computational problems associated with Racah algebra. Journal of Computational Physics, 1:397-405, 1967.
[96] A. Walfisz. Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, 1963.
[97] P. Wang, M. Guy, and J. Davenport. p-adic reconstruction of rational numbers. SIGSAM Bulletin, 16:2-3, 1982.
[98] Y. Wang. On the least primitive root of a prime. Scientia Sinica, 10(1):1-14, 1961.
[99] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences, 22:265-279, 1981.
[100] A. Weilert. $(1+i)$-ary GCD computation in $\mathbf{Z}[i]$ as an analogue to the binary GCD algorithm. Journal of Symbolic Computation, 30:605-617, 2000.
[101] A. Weilert. Asymptotically fast GCD computation in Z[i]. In Proc. 4 th International Symposium on Algorithmic Number Theory (ANTS-IV), pages 595-613, 2000.
[102] L. Welch and R. Scholtz. Continued fractions and Berlekamp's algorithm. IEEE Transactions on Information Theory, IT-25:19-27, 1979.
[103] D. Wiedemann. Solving sparse linear systems over finite fields. IEEE Transactions on Information Theory, IT-32:54-62, 1986.
[104] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory, IT-44:553-558, 1990.
[105] D. Y. Y. Yun. On square-free decomposition algorithms. In Proc. ACM Symposium on Symbolic and Algebraic Computation, pages 26-35, 1976.

